
April 2001 The Delphi Magazine 59

Beating The System: Taming
The Windows Desktop, Part 2
by Dave Jewell

Back in the previous issue, we
looked at how to programmati-

cally save and restore the position
of all the icons on your Windows
desktop. As you’ll recall, this turns
out to be a lot trickier than it ought
to be, thanks largely to the fact that
the listview control (which actu-
ally implements the desktop at the
API level) is running in a different
process space to that of our con-
trolling application. This means
that any API-level listview message
which uses pointers won’t work,
because what looks like a pointer
to one process is just a random
number from the perspective of
another process!

We were able to get around this
problem using DLL injection, the
technique pioneered by Jeffrey
Richter. Using a slightly massaged

version of his DLL code, I wrote a
small Delphi host application
which invoked the DLL and caused
it to be injected into the process
space of the Windows Explorer. It
was then possible to call Jeffrey’s
hidden dialog window from our
application, using the WM_APP mes-
sage to indicate whether we
wanted the desktop layout to be
saved and restored.

Son Of DIPSLIB
Although this is great as far as it
goes, I felt that it would be nice to
implement a much more flexible
mechanism. Jeffrey’s DLL saves or
restores the entire desktop in one
go, and doesn’t allow you to (for
example) change or query the posi-
tion or name of a single desktop
item. Moreover, the existing imple-
mentation always saves the desk-
top layout information into the
system registry at a fixed location.
Some folks might prefer to use a
different registry location, or even
save the layout to a file or Delphi
stream in a format of their own
choosing. It was clear that moving

the actual desktop load/save code
out of the DLL was a high priority.
What has to stay in the DLL, of
course, is the code which actually
communicates with the listview
control itself.

While I was at it, I spent a bit of
time trying to clean up the existing
DLL code. For example, in
the existing implementation of
SetDIPSHook, Jeff saves the thread
ID of the calling application (our
little Delphi app) into the global
dwApplication Thread. This thread
ID is used later, inside GetMsgProc,
to send back a WM_NULL message to
the application. You’ll recall from
last month’s discussion that this
serves as a sort of ‘I am ready’ mes-
sage, indicating that the injection
process is complete.

It occurred to me that it ought to
be possible to eliminate this global
variable. I modified the SetDIPS-
Hook code so that, rather than stor-
ing the result of GetCurrent-
ThreadId into a global, I simply
passed it as the wParam field in the
call to PostThreadMessage:

fOk = PostThreadMessage(
dwDesktopThread, WM_NULL,
GetCurrentThreadId(), 0);

This means that, after the DLL
injection has taken place, the
GetMsgProc routine is called for the
first time, and we can send the ‘I
am ready’ message to the Delphi
application by retrieving the
wParam field of the passed message.
Within the WH_GETMESSAGE hook
routine, the lParam field contains a
pointer to the MSG structure, so we
can do the deed as easily as this
without making recourse to a
global variable. I tried this, and it
worked just fine:

PostThreadMessage(((
LPMSG)lParam)->wParam,
WM_NULL, 0, 0);

➤ Figure 1: Want to have a
Windows desktop that looks
this cool? Well, probably not,
but in next month's article I'll
show how to programmatically
tweak the desktop in a wide
variety of ways.

60 The Delphi Magazine Issue 68

You might wonder why I’m making
so much fuss over the elimination
of a single global variable, but
recall last month’s discussion: the
whole reason why we need to use
a DLL written in (spit!) C++ is
because Delphi doesn’t allow us to
create fancy things such as shared
data segments. If only that shared
data segment could be eliminated,
then the way would be clear to
rewrite the DLL in a ‘proper’
language. Hmmm...

At this point, I was on a roll. The
only other variable in the shared
data segment is hHook, the hook
variable that’s used to implement
message chaining for the SetWin-
dowsHookEx mechanism. Could this
variable be eliminated too? If you
examine last month’s code, you’ll
see that hHook is referenced on the
‘application side’ (that is, in the
context of the calling Delphi appli-
cation) in only two places: once
when the hook mechanism is
installed and again when it’s
removed. On the ‘Explorer side’
(that is, in the context of the
Explorer process) it’s only ever
used to chain via CallNextHookEx.

I realised that I could use exactly
the same technique that I’d
employed in eliminating the
shared dwApplicationThread vari-
able. First, I removed the assorted
C++ pragmas that I discussed last
month, placing hHook directly into
the default non-shared (one per
instance) data segment. At the
same time, I altered the aforemen-
tioned PostThreadMessage call to
look like this:

fOk = PostThreadMessage(
dwDesktopThread, WM_NULL,
GetCurrentThreadId(),
(LPARAM)hHook);

This time, we’re not only passing
the application thread ID in wParam,
but we’re passing the hook vari-
able in lParam. I also edited the
GetMsgProc routine to look as
shown in Listing 1.

As a teenager, one of my great
passions was electronics and ama-
teur radio. While most of my con-
temporaries were at a disco or
down the pub, I generally had my
head buried in a schematic for

some piece of electronics. No, I
haven’t changed very much, have
I? One of the most intriguing con-
cepts I learned about was a type of
radio receiver where a single valve
or transistor could be magically
persuaded to perform two jobs at
once.

It’s occasionally possible to do
the same thing in software: if you
compare Listing 1 with last
month’s code, you’ll see that I’ve
eliminated the static Boolean vari-
able FirstTime which Jeff used to
determine whether this was the
first invocation of GetMsgProc. This
has now been replaced by a test of
hHook which is NULL on the first call.
Thus, hHook effectively does two
jobs at once, telling us that this is
the first call, and subsequently
being used to pass messages on via
CallNextHookEx.

If you’re finding this all a bit con-
fusing, think of the application
instance of the DLL as Instance A,
and Explorer’s instance as
Instance B. Obviously, these two
instances share the same code, but
because we’ve eliminated the
shared data segment, they each get
their own independent data seg-
ment, each of which contains an
(initially zero) copy of hHook. When
Instance A starts executing, the
code inside SetDIPSHook calls
SetWindowsHookEx to initialise A’s
copy of hHook. The only reason that
we need to store the value of hHook
inside Instance A is because it’s
needed later for the call to
UnhookWindowsHookEx. Instance A
passes the value of hHook to
Instance B via the call to
PostThreadMessage. Within Instance
B, GetMsgProc is called, notices that
B’s hHook is zero and retrieves the
required value from the lParam
field of the message. From then on,
it’s plain sailing.

For those of you who want to see
the final changes that I made to

Jeff’s code, it is included with this
month’s project files within
RichterDLL.zip. However, once I
got the DLL to the stage where I
could ditch the shared data seg-
ment, I decided to ditch C/C++ too!
The new Delphi-written DLL ended
up about one third the size of the
C/C++ equivalent, natch. While I
was at it, I decided to move the
GetDesktopListView and GetDesk-
topThread functions into the DLL.
They’re not strictly needed in the
application, and doing things this
way simplifies the DLL interface.

Designing A New Interface
Right then, time to roll up our
sleeves and add some improved
functionality to the new DLL. In the
original code, the WM_APP message
was used to effect communication
between the DLL and the host
application. Mr Richter used the
lParam field to distinguish between
a call to save the desk layout and
another call to restore the desk
layout. In our new, improved, ver-
sion, we want to provide a lot more
functionality, and this inevitably
entails a lot more messages.
Although we could stick with Jeff’s
scheme (using WM_APP for every-
thing) it means that we would lose
the lParam field, which is really too
high a price to pay. If you read the
SDK documentation, you’ll see
that it defines WM_APP as defining
the start of a range of messages
which are all available for use by
an application in sending mes-
sages to a private window class.
The hidden dialog window imple-
mented by the DLL certainly fits
the definition of a private window
class, since nobody knows about
it except our DLL, not even
Explorer, even though it is in fact
running in Explorer’s process
context. Furthermore, the range of

LRESULT WINAPI GetMsgProc (int nCode, WPARAM wParam, LPARAM lParam)
{

if (hHook == NULL)
{

hHook = (HHOOK)((LPMSG)lParam)->lParam;
// Create the server window to service client requests
CreateDialog (g_hinstDll, MAKEINTRESOURCE (IDD_DIPS), NULL, DIPS_DlgProc);
// Tell the original application that server is ready
PostThreadMessage (((LPMSG)lParam)->wParam, WM_NULL, 0, 0);

}
return CallNextHookEx (hHook, nCode, wParam, lParam);

}

➤ Listing 1

April 2001 The Delphi Magazine 61

available WM_APP messages is quite
large: $8000 through to $BFFF,
which should be more than enough
for our needs!

Accordingly, I decided to use a
different message number for each
function. Let’s work through an
example to make this a bit clearer.
If you look inside COMMCTRL.PAS,
you will find a routine, ListView_
SetTextColor, which looks as
shown in Listing 2.

Essentially, this is just a wrapper
function which uses the low-level
LVM_SetTextColor message to set
the foreground colour of the text
labels which appear beneath every
listview item when in ‘icon’ mode.
We can define an equivalent mes-
sage for our desk manager DLL like
this:

DM_SetTextColor = wm_App + 1;

Having done that, we can then
‘field’ the message within the DLL
as shown in Listing 3.

I decided to make life nice and
simple for the client, so you will
see that when the desktop text
colour is changed, the DLL code

automatically calls a routine called
RedrawItems which forces the desk-
top to immediately update its
on-screen display. Ordinarily, this
wouldn’t happen until the next
wm_Paint message was received for
each item. The implementation of
the RedrawItems code is shown in
Listing 4.

While I was busy writing this
code, it occurred to me that

the GetDesktopListView routine is
being called extensively (eg three
times in Listing 4) and since this
routine makes use of FindWindow to
search the top-level application
window list, it might represent a
performance bottleneck. Accord-
ingly, I rewrote GetDesktopList-
View so as to store the listview

function ListView_SetTextColor(hwnd:
HWND; clrText: TColorRef): Bool;
begin
Result := Bool(SendMessage(hwnd, LVM_SETTEXTCOLOR, 0, clrText));

end;

➤ Above: Listing 3 ➤ Below: Listing 4

case Msg of
// -------- Set desktop text colour: lParam = new color
DM_SetTextColor:
begin
Result :=
Bool(SendMessage(GetDesktopListView, lvm_SetTextColor, 0, lParam));

RedrawItems;
end;

procedure RedrawItems;
var
Count: Integer;

begin
Count := SendMessage (GetDesktopListView, lvm_GetItemCount, 0, 0);
SendMessage (GetDesktopListView, lvm_RedrawItems, 0, Count - 1);
UpdateWindow (GetDesktopListView);

end;

➤ Listing 2

62 The Delphi Magazine Issue 68

window handle in a global variable,
only calling FindWindow, etc, the
first time that it’s called.

This routine simply sends an
lvm_GetItemCount message to the
desktop to figure out how many
items are present. It then issues a
lvm_RedrawItems message, setting
the wParam field to zero and the
lParam field to the item count less
one. This has the effect of adding
the screen area of all the desktop
items to the update region for the
listview window, and the redraw
operation takes place once the
UpdateWindow API routine is called.

Of course, this is a relatively triv-
ial function. It doesn’t involve any
pointers, and pointers are the
whole reason why we’re injecting a
DLL into Explorer’s process space.
The above example is there simply
to illustrate the direction that I’m
going in.

Introducing WM_COPYDATA
Things get more interesting when
we try to do something such as
retrieving the caption of a speci-
fied desktop item. If you look at the
SDK documentation for LVM_Get-
ItemText, you’ll see that we have to
fill in the fields of a special LVITEM
data structure and pass the
address of that structure to the
listview control using the afore-
mentioned message number; this
sounds pretty tedious. Fortu-
nately, Borland provide a neat little
wrapper routine (I believe it’s
implemented as a macro for C/C++

developers) called ListView_Get-
ItemText, which eliminates the
need to faff around with the LVITEM
structure.

After some thought, I defined a
new message, DM_GetItemText, as
below:

DM_GetItemText = wm_App + 4;

This message uses the wParam field
to pass the index of the desktop
item that we’re interested in. The
lParam field is unused or, to put it
another way, we make no attempt
to pass a buffer address to the DLL.
Why? Because the hidden dialog’s
window procedure executes in the
context of Windows Explorer and
not in the context of the Delphi
application, so the address would
be invalid. What, then, do we do
with this message inside the DLL,
and how do we pass the caption
text back to the application?

All is revealed in Listing 5. This
routine, HandleGetItemText, is trig-
gered when a DM_GetItemText mes-
sage is received by the dialog
window. As parameters, it takes
the handle of the dialog window
and the index value passed via
wParam. The first job is to determine
the number of desktop items, this

information being used to validate
the passed index value. If every-
thing checks out OK, the ListView_
GetItemText routine is then called,
returning the caption of the
required item in buff.

And then comes the sneaky bit.
One of the least known, most over-
looked, and yet most potentially
useful Windows messages is
WM_COPYDATA. This allows us to send
data across process boundaries,
without worrying about pointer
problems. The WM_COPYDATA mes-
sage takes two parameters in
wParam and lParam. The former is
the handle of the window that’s
sending the message, whereas
lParam is a pointer to a special data
structure, TCopyDataStruct, which
describes the data we want to send
to the other application, see
Listing 6.

The Microsoft SDK documenta-
tion can’t quite seem to make up its
mind as to whether dwData is a
simple integer or a pointer. In
actual fact, it’s an integer. You can
use this optional field to pass an
application-defined value back to
the calling application. As you can
see from Listing 5, I chose to pass
back the message number of the
original message, DM_GetItemText.
This acts as a sort of ‘handshake’,
making it easier for the calling
application to verify that the
received WM_COPYDATA message is
the response to a DM_GetItemText
message. The next field, cbData,
contains the number of bytes of

function HandleGetItemText (DlgWnd: hWnd; Index: Integer): Bool;
var
Count: Integer;
cds: TCopyDataStruct;
buff: array [0..255] of Char;

begin
Result := False;
Count := SendMessage (GetDesktopListView, lvm_GetItemCount, 0, 0);
if (Index >= 0) and (Index < Count) then begin
buff[0] := #0;
ListView_GetItemText (GetDesktopListView, Index, 0, buff, sizeof (buff));
cds.dwData := DM_GetItemText;
cds.cbData := lstrlen (buff) + 1;
cds.lpData := @buff;
Result :=
Bool(SendMessage(AppWindow, wm_CopyData, DlgWnd, Integer (@cds)));

end;
end;

➤ Listing 5

➤ Figure 2: This may look
like a screenshot from last
month, but this time
DeskManager.DLL (shown
running in Explorer's process
space) is written in 100%
Delphi! Ah bliss…

TCopyDataStruct = packed record
dwData: DWORD;
cbData: DWORD;
lpData: Pointer;

end;

➤ Listing 6

April 2001 The Delphi Magazine 63

data that we want to pass to the
target application, and lpData is a
pointer to the data itself. Armed
with this information, you should
be able to understand the rest of
Listing 5.

It’s easy to get into a ‘deadly
embrace’ situation here. The SDK
documentation states that you
should use WM_COPYDATA synchro-
nously rather than asynchr-
onously. In other words, use Send-
Message rather than PostMessage.
This is important because it guar-
antees the validity of the data (in
the context of the originating pro-
cess) until the transfer is complete.
Unfortunately, we’ve only been
using PostThreadMessage to com-
municate with the Delphi applica-
tion and a post is a post is a post!

I decided to play safe and modify
the DLL interface further such that
there are actually two interface
routines:

function DeskManagerLoad(
AppWindow: hWnd): Bool;
stdcall;
external ‘DeskManager.dll’;

function DeskManagerUnload:
Bool; stdcall;
external ‘DeskManager.dll’;

Their use should be self-explana-
tory, except for the window handle
that’s passed to DeskManagerLoad.
This window handle is saved by
the DLL and all subsequent
WM_COPYDATA responses (and possi-
bly more besides) are sent directly
to this window handle. This corre-
sponds to the new variable,
AppWindow, which you can see used
in Listing 5.

Why did I mention the dreaded
deadly embrace? Well, imagine
what would happen if you used
SendMessage to synchronously send
a DM_GetItemText message from the
Delphi application. As we’ve seen,
this would trigger a call to
SendMessage from the DLL, using
WM_COPYDATA to try and send the
desktop caption text back to the
Delphi app. This message couldn’t
be processed by the Delphi appli-
cation because it would be blocked
waiting for the original SendMessage
to complete. Thus you get a
deadlock situation where two

processes are sat waiting for each
other to complete. ‘This applica-
tion is not responding. Please
click...’

In principle, you could get
around this by implementing a
separate thread within the Delphi
program, whose sole job is to
‘drive’ the DLL interface, but you’d
then have to ensure that you sent
messages from one thread and
received them on another thread;
nah: too messy. Since the DLL has
to send WM_COPYDATA synchro-
nously, I decided that the simplest
solution was to use PostMessage on
the application side for any mes-
sage that is going to trigger a
WM_COPYDATA response.

Of course, this means that the
application has got to somehow
post a message and then twiddle
its thumbs waiting for a
WM_COPYDATA reply to arrive. On the
other hand, we want what looks
like a nice easy synchronous API
from the client perspective. How to
achieve it?

Wait For It, Wait For It...
Well, quite easily, actually. Take a
look at Listing 7, which shows the
basic idea. GetItemCaption takes a
single Index value and returns the
corresponding item’s caption
string. From the perspective of the
routine’s caller, the operation is
completely synchronous. Inside
GetItemCaption, we call a routine
called PendOnDeskTopMessage. This
same routine is called whenever
we want to wait for data to be

returned from the desktop
manager DLL.

PendOnDeskTopMessage begins by
setting a private integer field of the
form, dmResponse, to -1 and then
posts the required message to the
dialog window. Finally, it sits in a
loop calling Application.Process-
Messages while waiting for the
WM_COPYDATA response to be
received.

If you have never used Applica-
tion.ProcessMessages before, think
of it as the ‘message pump’ which
keeps your Delphi application
alive. If you didn’t call this routine,
but just sat around waiting for
something to happen, then noth-
ing ever would: at least, in terms of
received Windows messages!

You’ll notice that while driving
the message pump, the loop
checks to see if dmResponse has
been set to the value of the initiat-
ing message. You’ll appreciate that
this is the ‘handshake’ mechanism
that I referred to earlier. From a
purist’s point of view, this little
sanity-check is not particularly
rigorous. Strictly speaking, if you
wrote the code in such a way as to
post multiple messages to the
management DLL, there’s no guar-
antee that the responses to those
messages would be received in the
same order that the messages
were sent. For this reason, I’ve
resisted the temptation to get too
fancy, and every operation is
essentially atomic.

For similar reasons, you might
be wondering why I bother to

function TForm1.PendOnDeskTopMessage (Msg, wParam, lParam: Integer): PChar;
begin
dmResponse := -1;
PostMessage (hDeskWin, Msg, wParam, lParam);
while dmResponse <> Msg do Application.ProcessMessages;
Result := dmData;

end;
function TForm1.GetItemCaption (Index: Integer): String;
begin
Result := '';
if (Index >= 0) and (Index < GetItemCount) then
Result := StrPas (PendOnDesktopMessage (DM_GetItemText, Index, 0));

end;

procedure TForm1.WMCopyData (var Message: TWMCopyData);
begin
// Make sure it's from the desktop manager DLL
if Message.From = hDeskWin then with Message, Message.CopyDataStruct^ do begin
ReallocMem (dmData, cbData);
Move (lpData^, dmData^, cbData);
dmResponse := dwData;
Result := Integer (True);

end;
end;

➤ Above: Listing 7 ➤ Below: Listing 8

64 The Delphi Magazine Issue 68

range-check the value of the Index
parameter on entry to GetItem-
Caption. After all, it’s checked again
within the DLL. But if you look at
the way the DLL code has been
written, an invalid index value
means that the DLL will never send
WM_COPYDATA back to the host appli-
cation, which in turn means that
PendOnDeskTopMessage would spin
forever, waiting for a response that
never comes. Obviously, this is a
scenario that’s best avoided.

The final part of the jigsaw is the
WMCopyData routine in Listing 8. This
is a standard message handler
method, set up so as to be trig-
gered whenever a WM_COPYDATA
message is received, thus:

procedure WMCopyData(
var Message: TWMCopyData);
message wm_CopyData;

If the incoming message was
indeed from the hidden dialog
window, then the data pointed to
by the private dmData field is reallo-
cated to the size of the incoming
data and the data then copied
across. The SDK documentation
stresses that this data is strictly
transitory, if you want to copy the
information, you have to do it at
the point where the WM_COPYDATA
message is processed. Finally, the
dmResponse field is set to the passed
dwData field, thus completing our
simple-minded little handshake
mechanism, and (hopefully!)
taking PendOnDeskTopMessage out of
its wait loop.

Just to illustrate how easy to use
this is, Listing 9 shows a small code
snippet which fills a listbox with
the captions of all the currently
defined desktop icons. When I
wrote this code, and particularly
relied upon the WM_COPYDATAmecha-
nism, I was a little worried that
performance might be less than

sparkling. After all, I’ve got over 40
items on my desktop (some folks
have a lot more!) and getting the
caption for each of these involves
posting a message and then a wait
for the DLL to send a response. I
was concerned that it might be
necessary to get the whole thing in
one go, concatenating all the cap-
tion strings into one data block
with separators between them. As
it turned out, this proved to be
quite unnecessary as the above
code appears to execute virtually
instantaneously on my ageing
500MHz Pentium III [Dave checks
the price of the latest 1.4GHz P4,
blows the dust off his wallet, winces
painfully and hastily shoves it back
into his pocket... Ed].

That said, there’s obviously a
strong argument for treating the
entire desktop as a single logical
chunk of data. If your application
gets the desktop icon count one
minute, and then tries to access
the caption of one of those icons
half an hour later, you shouldn’t be
too surprised if the goalposts have
moved in the meantime, and the
desktop item you’re interested in
has been deleted. One way around
this would be to take a ‘snapshot’
of the state of play, or get/set all the
icons at the same time, as per Jeff’s
original code.

Next Month
I’d originally planned that this
would be the second and final arti-
cle on the subject of taming the
Windows desktop. However, I have
to confess that it won’t be. This
month, I succumbed to the tantalis-
ing puzzle of how to eliminate the
shared data segment from Mr Rich-
ter’s DLL and, once I’d solved that

problem, the further temptation of
rewriting the whole thing in Delphi
was irresistible!

Even so, this definitely isn’t time
wasted. If you’ve worked through
this month’s and last month’s
columns, you should by now have
a very firm grasp of how to break
down the walls between Win32
processes using DLL injection, and
you will likewise have learned a
valuable technique for inter-
process communication using
WM_COPYDATA. I’m not saying that
you should routinely set out to
defeat the security mechanisms
that Windows puts in your way,
but it’s nice to know how to do this
kind of thing when you need to
write an operating system utility
that’s a little out of the ordinary.

Now that we’ve got the architec-
tural foundations well and truly in
place, next month’s third (and
final!) article on desktop access
and management will flesh out the
existing code with a lot more func-
tionality for getting/setting icon
captions, positions, spacing,
colours and assorted other prop-
erties. Also, I really will package
the whole thing up into a reusable
component for ease of use. Trust
me, I’m a doctor...

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level Windows programming and
cross-platform issues. He is the
Technical Editor of The Delphi
Magazine. You can contact Dave
at TechEditor@itecuk.com

This article is © 2001 Dave Jewell
All Rights Reserved.

➤ Figure 3:
For now, the
test app allows
you to tweak
the desktop's
foreground text
colour and
retrieve a list of
desktop icon
captions. Stay
tuned for more
next month!

procedure TForm1.Button2Click(
Sender: TObject);

var
Idx: Integer;

begin
ItemNames.Clear;
for Idx := 0 to GetItemCount-1 do
ItemNames.Items.Add(
GetItemCaption (Idx));

end;

➤ Listing 9

	Son Of DIPSLIB
	Designing A New Interface
	Introducing WM_COPYDATA
	Wait For It, Wait For It...
	Next Month

